- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources3
- Resource Type
-
0003000000000000
- More
- Availability
-
30
- Author / Contributor
- Filter by Author / Creator
-
-
Ramakrishnan, Anand (3)
-
Whitehill, Jacob (3)
-
Kyriacou, Harrison (1)
-
LoCasale-Crouch, Jennifer (1)
-
Ottmar, Erin (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
& Arnett, N. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Whitehill, Jacob; Ramakrishnan, Anand (, International Conference on Machine Learning)Automatic machine learning-based detectors of various psychological and social phenomena (e.g., emotion, stress, engagement) have great potential to advance basic science. However, when a detector d is trained to approximate an existing measurement tool (e.g., a questionnaire, observation protocol), then care must be taken when interpreting measurements collected using d since they are one step further removed from the under- lying construct. We examine how the accuracy of d, as quantified by the correlation q of d’s out- puts with the ground-truth construct U, impacts the estimated correlation between U (e.g., stress) and some other phenomenon V (e.g., academic performance). In particular: (1) We show that if the true correlation between U and V is r, then the expected sample correlation, over all vectors T n whose correlation with U is q, is qr. (2) We derive a formula for the probability that the sample correlation (over n subjects) using d is positive given that the true correlation is negative (and vice-versa); this probability can be substantial (around 20 - 30%) for values of n and q that have been used in recent affective computing studies. (3) With the goal to reduce the variance of correlations estimated by an automatic detector, we show that training multiple neural networks d(1) , . . . , d(m) using different training architectures and hyperparameters for the same detection task provides only limited “coverage” of T^n.more » « less
-
Ramakrishnan, Anand; Ottmar, Erin; LoCasale-Crouch, Jennifer; Whitehill, Jacob (, Automatic Face and Gesture Recognition)We devised and evaluated a multi-modal machine learning-based system to analyze videos of school classrooms for "positive climate" and "negative climate", which are two dimensions of the Classroom Assessment Scoring System (CLASS). School classrooms are highly cluttered audiovisual scenes containing many overlapping faces and voices. Due to the difficulty of labeling them (reliable coding requires weeks of training) and their sensitive nature (students and teachers may be in stressful or potentially embarrassing situations), CLASS- labeled classroom video datasets are scarce, and their labels are sparse (just a few labels per 15-minute video dip). Thus, the overarching challenge was how to harness modern deep perceptual architectures despite the paucity of labeled data. Through training low-level CNN-based facial attribute detectors (facial expression & adult/child) as well as a direct audio-to- climate regressor, and by integrating low-level information over time using a Bi-LSTM, we constructed automated detectors of positive and negative classroom climate with accuracy (10- fold cross-validation Pearson correlation on 241 CLASS-labeled videos) of 0.40 and 0.51, respectively. These numbers are superior to what we obtained using shallower architectures. This work represents the first automated system designed to detect specific dimensions of the CLASS.more » « less
An official website of the United States government

Full Text Available